
Domain Decomposition for Colloid
Clusters

Pedro Fernando Gómez Fernández

MSc in High Performance Computing
The University of Edinburgh
Year of Presentation: 2004

Authorship declaration

I, Pedro Fernando Gómez Fernández, confirm that this dissertation and the work pre-
sented in it are my own achievement.

1. Where I have consulted the published work of others this is always clearly at-
tributed;

2. Where I have quoted from the work of others the source is always given. With the
exception of such quotations this dissertation is entirely my own work;

3. I have acknowledged all main sources of help;

4. If my research follows on from previous work or is part of a larger collaborative
research project I have made clear exactly what was done by others and what I
have contributed myself;

5. I have read and understand the penalties associated with plagiarism.

Signed:

Date:

Matriculation no:

Abstract
This project involves the creation of a 'toy' model that will simulate particles moving
in a liquid using the 'lattice-Boltzmann' method. The model will have to implement
domain decomposition and distributed data using the MPI library for a two dimen-
sional problem.

Particles experience forces from the liquid that is represented by a lattice and from
interaction with other particles.

Problems arise when particles have to check for interaction forces with particles in
surrounding subdomains and when they have to move from one subdomain to a con-
tiguous one.

All the algorithms needed to create a 'toy' model for this problem will be described.

At the end, an implementation of the problem in C language is created and tested
checking serial result against parallel results.

Table of Contents
Abstract... 3
1. Introduction...8

1.1 Solid-Fluid Mixtures.. 8
1.2 The Lattice Boltzmann Method..8
1.3 Solid Particles in Lattice Boltzmann..9
1.4 Project Aim.. 10

2. Analysis of the Problem..12
2.1 Fluid only problem... 12
2.2 The Particle only Problem..14
2.3 Fluid with Particles.. 15

2.3.1 Functional Decomposition..15
2.3.2 Domain Decomposition..17

2.3.2.1 Replicated Data...18
2.3.2.2 Distributed Data..19

2.3.3 Decomposition of choice..20
2.4 Particle interactions.. 20

2.4.1 Direct method... 20
2.4.2 Cell Lists...20
2.4.3 Clusters of solid particles... 22

2.5 Communications.. 22
2.5.1 Halo Communications.. 24
2.5.2 Force Communications...26

3. Design... 29
3.1 Program structure... 29
3.2 Main Constants...30
3.3 Data Structures... 31

3.3.1 Solid Particles...31
3.3.2 Particle Lists... 32
3.3.3 Cell Lists...33
3.3.4 MPI Process..40

3.4 Communication.. 41
3.4.1 MPI Communications...41
3.4.2 Halo Regions.. 43
3.4.3 Adding forces... 43
3.4.4 Memory Management...48

3.5 Clusters...48
3.5.1 Reduction Method.. 49
3.5.2 Communications Method... 49

3.6 Testing Strategy..51
4. Discussion and Summary..52

4.1 Discussion.. 52
4.1.1 Badly Distributed Problems..52
4.1.2 Critical Gap Bigger than Subdomain Size..53

4.2 Summary.. 53
Appendix A: Header Files.. 54

constants.h..54
particle.h...54

cellList.h...59
MPIWrapper.h..63

Appendix B: Workplan... 65
References...66

Illustration Index
Figure 1: 3D Lattice.. 8
Figure 2: 2D Lattice.. 8
Figure 3: A single particle of radius a. The centre of the particle moves continuously

across the lattice... 9
Figure 4: 2 particles close together where the gap 'h' between them is very small..... 10
Figure 5: Cluster problem: several particles near each other forms a cluster............. 10
Figure 6: Lattice without particles.. 12
Figure 7: Domain decomposition of the lattice...13
Figure 8: Halo communication of four subdomains in two dimensions..................... 13
Figure 9: Corner communication. The black square is swapped first to the up

subdomain and then to the upper right subdomain avoiding diagonal
communication...14

Figure 10: Functional decomposition for 6 processors. 4 processors are used for the
domain decomposition of the liquid problem and 2 are used for the
decomposition of the solid particles problem.. 16

Figure 11: Domain decomposition for the whole problem... 17
Figure 12: Replicated data. Each subdomain contains the information about a part of

the lattice and all the solid particles... 18
Figure 13: Distributed data. Each subdomain contains the information about a region

of the lattice, the particles in that region and the ones that are very near to
the region..19

Figure 14: Size of the cells. If size is 2*radius + criticalgap, then if two particles are
not in contiguous cells, they will be further than the critical gap............ 21

Figure 15: A particle will only have to check for interaction with other particles in
the cells around its cell...21

Figure 16: Subdomain before the halo swap. In the centre (the shaded region), a
region of the lattice and four solid particles are stored. Around, the halo is
still empty...24

Figure 17: Subdomain after the halo swap..25
Figure 18: Two copies of the same solid particle in two different subdomains. Each

copy has different partial forces before communication. When the forces
for the two copies are added, then each copy will have the interaction
forces from each of the nine cell lists...27

Figure 19: The two copies of a solid particle in different subdomains when all the
forces are added..28

Figure 20: The two copies of a solid particle in different subdomains after the update
of the position. The one on the left subdomain should be deleted...........28

Figure 21: Links required by the cells not in the halo for movement......................... 35
Figure 22: Links needed for movement by a cell not in the borders of the lattice......36
Figure 23: Links needed for movement by a cell in the borders of the lattice............36
Figure 24: Links needed for movement by a cell in the corners of the lattice............ 36
Figure 25: Links required by the cells in the halo for movement.............................. 37
Figure 26: Links needed for movement by a cell that is not in the two cells nearest to

the corner..38
Figure 27: Links needed for movement by a cell that is in the second cell nearest to

the corner..38
Figure 28: Links needed for movement by a cell that is in the corner....................... 38

Figure 29: Links required by the cells not in the halo for calculation of interaction
forces..38

Figure 30: Links required by the cells in the halo for calculation of interaction forces.
..39

Figure 31: Links needed for forces by a cell that in a side..39
Figure 32: Links needed for forces by a cell that in a corner......................................39
Figure 33: The particle A in the right with x coordinates 11, will be sent because of

periodic boundaries to the halo in the left subdomain, where the x
coordinate will have to be -1. This is resolved sending relative
coordinates to the border of the lattice region..42

Figure 34: Possible particle position cases and directions to where interaction forces
will be looked for in a 4 subdomain representation with 9 particles and
their copies because of halo swap.. 45

Figure 35: Two copies of the same particle may look for interaction forces in the halo
cells.. 46

Figure 36: A cluster in two subdomains... 50

1. Introduction

1. Introduction

1.1 Solid-Fluid Mixtures
The physical problem that will be considered in this project is that of solid (colloidal)
particles suspended in a fluid, or mixture of fluids. The solid particles are usually
larger than the molecules that make up the fluid; typically their size is about few μm.
Real systems will be made up of many particles.

There are a lot of important applications of this model, for example: paints, cosmet-
ics and food. So a software model to simulate this physical problem if of great inter-
est. As this kind of problem will require high computation, a software model that can
be parallelized among several processors will be required.

1.2 The Lattice Boltzmann Method
The method that will be used to model this physical problem in a computer will be
the Lattice Boltzmann Method[1]. The aim of this method is to solve the Navier-
Stokes equations for fluid dynamics. This method is based on a regular discrete lat-
tice at which the fluid properties are computed. This lattice could be a 3 dimensional
lattice as the one shown in figure 1. But in this project, a 2 dimensional one will be
used for simplicity as the one shown in figure 2.

In this method, the lattice spacing between points is a fixed Δx, and in time fluid
properties are computed at discrete time steps Δt.

The Lattice Boltzmann method has a lot of convenient features. It has the ability to
represent moving objects that will be useful to represent the solid particles suspended
in the fluid as will be see in the next section. All the operations are local so it is good
for parallelization and in addition, only halo swaps between neighbouring sites are
required for domain decomposition.

Page 8

Figure 1: 3D Lattice. Figure 2: 2D Lattice

1. Introduction

1.3 Solid Particles in Lattice Boltzmann
The solid particles suspended in the fluid [5, 6] can be represented as solid spheres
(or circles in the 2 dimensional problem) which have a radius of some Δx (lattice
spacings) and a position and a velocity that will allow them to move smoothly across
the lattice. This means that the centre of the solid particle can be positioned anywhere
in the lattice and not only in the lattice points. A single particle is shown in figure 3.
The lattice points inside the particle are considered solid points while the lattice
points outside the lattice are considered liquid points.

For each particle, there is a solid-fluid boundary condition that is included by identi-
fying 'links' which connect solid to fluid lattice points. From that, a discrete shape for
each particle is obtained; this will change as the particle moves in the lattice. The
force between the particle and the fluid will be calculated by adding contributions
from all the links around the particle. The new velocity and position of the particle
for that time iteration can be calculated from the resulting forces.

The long range hydrodynamic interactions between the particles are represented by
the Lattice Boltzmann fluid, but when the particles are very close together, additional
forces may have to be added explicitly. This will give rise to a molecular dynamics-
like problem which involves the particles only.

For example, representation of lubrication forces between the particles [4] requires
an additional force at close range which depends on the gap 'h' between the particles
and the difference in particle velocity. As the size of the force scales 1/h, it can be-
come very high as the particles approach to touching. This fact will require a special
treatment of the velocity update of the particles when they are very close together.
This situation for two particles is shown in figure 4.

Page 9

Figure 3: A single particle of radius a. The
centre of the particle moves continuously

across the lattice.

1. Introduction

This last situation can involve a large number of particles, this will be referred as the
cluster problem. It is shown in figure 5. Here, the special treatment of the velocity
update will require that all particles in a cluster will be treated together [4].

1.4 Project Aim
The aim of this project is to produce a working version of the particle problem de-
scribed using domain decomposition and message passing via MPI [7]. As the full
Lattice Boltzmann problem with hydrodynamic interactions is complicated[3], this

Page 10

Figure 4: 2 particles close together where the gap
'h' between them is very small.

Figure 5: Cluster problem: several particles near
each other forms a cluster.

1. Introduction

project will concentrate only on a 'toy' model which involves only a basic representa-
tion of the fluid lattice and the particles. However, all the relevant communications
will be considered.

The constraint is that the fluid lattice will be subject to regular domain decomposi-
tion because this is the decomposition for the fluid lattice.

There are a number of main problems for particles:

• Data distribution and decomposition.

• Updating the data as particles move across the lattice.

• Computing the sum of force contributions around a particle (which may involve
up to 8 processors in 3 dimensions and up to 4 processors in 2 dimensions).

The analysis can consider 2 dimensions and 3 dimensions; but code will be 2 dimen-
sions as there are no significant new issues in moving it to 3 dimensions.

The aim is to identify an elegant way to do the problem. Absolute efficiency cannot
be assessed as full fluid problem is not involved.

Page 11

2. Analysis of the Problem

2. Analysis of the Problem
This project consists in the creation of a 'toy' model that will simulate solid particles
in a liquid. The program will distribute the work involved with both fluid and parti-
cles by domain decomposition using the MPI library.

This problem involves the simulation of the movement of particles inside a liquid.
For simplicity, the problem is reduced to 2 dimensions. The liquid is represented by a
lattice which has regularly distributed points. This is the Lattice Boltzmann model.
This lattice will have periodic boundaries. That means that if a particle arrives to a
boundary of the lattice, the solid particle will appear in the opposite boundary.

Before going on to discuss the details of the solution, this section provides an analy-
sis of the different problems involved.

2.1 Fluid only problem
For the fluid only problem, all the lattice points will have to be updated (see figure 6
which is the whole lattice to be computed). It seems that domain decomposition will
work perfectly for this problem because each lattice point has the same computing
load. The region is rectangular and the computation of each lattice point only de-
pends on the local point and the adjacent lattice points.

It is very easy to divide the whole lattice in smaller lattices for each subdomain (see
figure 7 for a 2X2 domain decomposition where the whole lattice has been divide in
4 subdomains). This will be a good decomposition as every subdomain will have the
same load, so it will be a load balanced decomposition.

Page 12

Figure 6: Lattice without particles

2. Analysis of the Problem

As MPI will be used, the most direct way to deal with the domain decomposition is
the use of halos in each subdomain. The halos will contain the information about the
adjacent lattice points. They will be swapped at every time iteration by means of MPI
messages in every dimension of the lattice. (See figure 8, where subdomains with the
halos and halo communication are shown). The program will swap the halos, com-
pute an iteration and repeat this process again until all the iterations required are per-
formed1.

1 It is possible to use bigger halos and then more than one iteration between communications will be
possible with a more complex code, but as will be seen later, when particles will be added to the
problem, a communication will be required after each iteration.

Page 13

Figure 7: Domain decomposition of the
lattice

Figure 8: Halo communication of four subdomains
in two dimensions.

2. Analysis of the Problem

It is important to notice that the lattice will have periodic boundaries, so the halos at a
boundary will be swaped by the subdomain in the opposite side of the lattice.

Another important thing is that the computation at a lattice point will depend on the
lattice points around it, even in the diagonal directions, so it seems that a diagonal
communication will be needed. However, that is not true, as the two dimensional
communication will also carry this information. This can be see in detail in figure 9:
the upper right subdomain will need the upper right lattice point of the bottom left
subdomain which is shadowed in the picture. In the vertical communication, repre-
sented by the arrow labeled with '1', the shaded point is copied to the upper left sub-
domain halo. Then in the horizontal communication represented by the arrow labeled
with '2', the shadowed point is copied to the correct position in the halo of the upper
right subdomain. So after the vertical and horizontal communications the needed lat-
tice points at the corners have also been copied.

Notice the scaling of computation and communication as the size of the problem in-
creases. In the two dimensional case, if a lattice of size LxL is used, the computation
scales as L2 but communications scale as L. In the three dimensional case, compu-
tation will scale as L3 and communications as L2 . That means that the scaling
of communications will be always smaller than the scaling of the computation of the
problem.

2.2 The Particle only Problem
Inside this fluid lattice, some solid particles are simulated. The particles are spheres,
or in this 2 dimensional simplification, circles. They can move freely in a region.

A particle is moving accordingly to the forces applied to it. This forces will appear if
two solid particles are near enough, then an explicit repulsion force may be involved.

Page 14

Figure 9: Corner communication. The black
square is swapped first to the up subdomain and

then to the upper right subdomain avoiding
diagonal communication.

2. Analysis of the Problem

If only particles were involved (no fluid), the problem would look like molecular dy-
namics.

2.3 Fluid with Particles
When the fluid problem and the particle problem are added together, the program
must take into account the coupling between solid and fluid. This is because in the
real program, the particles will require data from the fluid lattice to compute a force.
Because the fluid is not represented in the 'toy' model, the force calculation is not
done. Instead, the program will calculate the number of lattice points the particle is
over, it will only calculate the ones it has access to (even when it is easy to calculate
this points only knowing the coordinates and radius of the solid particle). As this is a
simulation of the calculation of the force from fluid, the update of the position of par-
ticles will be done after calculating these points.

There are different solutions that can be used to resolve the parallelization problem
using MPI. Some possible solutions are explained in the following sections before
describing the actual solution used.

2.3.1 Functional Decomposition
As this problem will be high computationally demanding for large systems with
many particles, a MPI implementation to deal with the solid particles will be imple-
mented. If the only requirement were to deal with the particles, a domain decomposi-
tion may not be the preferred solution. This is because this will not be a load bal-
anced problem as a regular distribution of solid particles in the lattice is not guar-
antied. Instead of that, a better solution will be to distribute similar amounts of parti-
cles to each processor. The problem is that this program, or at least its concepts, will
be integrated in a bigger program that also deals with the liquid problem. That pro-
gram has a regular distribution of process as the liquid points are regularly distributed
in the lattice. That is why the bigger program is load balanced and a domain decom-
position using MPI is very efficient. For the combined problem, an efficient approach
might have some processors for the liquid points domain decomposition problem and
some others to compute the solid particles in a distributed way (see figure 10).

Page 15

2. Analysis of the Problem

There is a need for communication between the liquid points and the solid particles,
so if a solid particle 'S1' is over a liquid point 'L1', the liquid point 'L1' must know
about that situation. That will require that every processor owning a subdomain of the
lattice with the liquid points will communicate with each processor that is processing
solid particles. So, if for example we have a subdomain decomposition of 2x2 for the
liquid points and 2 processors for the solid particles, the following communications
will be required:

• Among the subdomain decomposition, each subdomain will communicate with
adjacent subdomains, so if the decomposition is 2x2, 2x2 (horizontal communica-
tions) + 2x2 (vertical communications) = 8 communications will be required.

• Between the sub-domain decomposition and the solid particles, 2x2x2 = 8 com-
munications will be required.

The total communications have been doubled compared to the case when there are
halo communications only.

In general, if the subdomain decomposition will take x processors and np is the total
number of processors, the solid particles will take np – x = y processors. In a subdo-
main two dimensional decomposition of axb, 2xaxb communications will be re-
quired.

An axa subdomain decomposition will be assumed. So a = x , and communica-
tions required will be: Communicationssubdomain=2× x× x=2×x .

Communications between the sub-domains and the solid particles process will be:
Communicationssubdomain−solidParticles=x× y .

Page 16

Figure 10: Functional decomposition for 6 processors. 4 processors are used for the
domain decomposition of the liquid problem and 2 are used for the decomposition of the
solid particles problem.

2. Analysis of the Problem

So the total communications will be:

 Communicationstotal=2×xx× y=x 2 y ,

and:
Communicationssubdomain−solidParticles

Communicationssubdomain
= y

2 .

From these results it is possible to see that if the number of processors is high and the
ones used for particles is not too low, the communications will be considerably in-
creased. Also, if the processors used for particles is high, the communications are as
well increased independently of the number of processors. For example: for np = 512
and y = 50, communications are increased 25 times compared to the only the subdo-
main communications.

These results are only indicative, as it must be taken in account the amount of com-
puting between communications, so the proportion between communications and
process; but anyway these results seems to indicate that this approach is only valid
when the np and the yp are both low; and in this case, a balanced decomposition for
the solid particles processing is not so important.

2.3.2 Domain Decomposition
A second approach is to make a purely domain decomposition. In the domain decom-
position, each subdomain will be in charge of part of the lattice and also of the solid
particles in that region of the lattice (See figure 11).

Page 17

Figure 11: Domain decomposition for the whole
problem.

2. Analysis of the Problem

It must be noticed that from the results in the previous section, doing a domain de-
composition for the particles may not be completely load balanced. However it saves
a great number of communications between processes and will be more efficient.

Some problems arise with this solution:

• At certain times, some particles will move from one subdomain to a contiguous
one.

• Some times, a particle close to the boundary can appear in more than one subdo-
main.

Two possible solutions to handle these problems with domain decomposition are ex-
plained in the next two sections.

2.3.2.1 Replicated Data
Each solid particle has its centre in a single subdomain, but it is possible that the sol-
id particle will cover more than one subdomain. In fact, a solid particle can cover be-
tween 1 and 4 subdomains in the 2 dimensional problem (when it is in the corner of a
subdomain) at the same time. This is a problem as the liquid points will have to know
about the solid particle, so each of those subdomains will have to know about the
particle.

A possible solution for this problem is to use 'replicated data'. That means that each
subdomain can know about all the solid particles in the lattice (See figure 12).

This solution has the advantage that is very easy to implement as the only communi-
cation required between subdomains for the particles is a global reduction communi-
cation. This reduction communication will allow that if a solid particle obtain differ-

Page 18

Figure 12: Replicated data. Each subdomain
contains the information about a part of the
lattice and all the solid particles.

2. Analysis of the Problem

ent forces from different subdomains, the forces will be added before moving the par-
ticle. This communication will also allow to add all the liquid forces the solid particle
has in the case that the particle is over more than one different subdomains.

But this solution has the disadvantage that each subdomain has a lot of data that does
not need. All the particles in a subdomain that are not over its area will have to per-
form update calculations that will be replicated over all the subdomains. Also the
global communications will not scale with the number of process; whatever number
of processes used, the global communications will scales as N2 where N is the
number of particles.

2.3.2.2 Distributed Data
A more complex solution is 'distributed data'. This means that each subdomain only
know about the particles in the subdomain and the ones that are very near to it (See
figure 13).

This will allow the calculation of the forces of each particle to be done totally or par-
tially in each subdomain. If it can only be performed partially, a reduction communi-
cation among the subdomains that hold a copy of that solid particle is performed. The
same happens in the calculation of the liquid forces the solid particle has.

This solution has the advantage that each subdomain only has the necessary informa-
tion for it, but it is more difficult to implement. Also, as no global communications
are required, the communications will scale according to the number of processes; for
more processes, less communication required for each one.

Page 19

Figure 13: Distributed data. Each
subdomain contains the information
about a region of the lattice, the
particles in that region and the ones
that are very near to the region.

2. Analysis of the Problem

2.3.3 Decomposition of choice
The 'distributed data' solution will be implemented in this project as the 'replicated
data' solution does not scale. This will require communication between subdomains
at each iteration to send the new particles that a subdomain will have at the bound-
aries. This communication will be mandatory as a subdomain will not be able to
know if it will receive a new solid particle at the boundary or not, so it will always try
to receive a message at each iteration2.

2.4 Particle interactions
When there are two solid particles close together, they may be repulsed by an addi-
tional force added to prevent them overlapping. This repulsion force will only be ap-
plied when the two solid particles are nearer than a fixed critical gap. This critical
gap will be usually about half the size of separation between lattice points. Inside a
lattice, there are two solutions to detect if two solid particles are nearer than the criti-
cal gap or not; they will be discussed in the next sections.

It is important to notice that these issues are involved in the serial solution of the
problem.

2.4.1 Direct method
It is possible to check each solid particle with the rest of the solid particles to deter-
mine if they are nearer than the critical gap.

There is also a problem associated with the domain decomposition and the interac-
tion detection. This is when a particle is in a subdomain and the other is in another
subdomain but they are nearer than the critical gap. So each subdomain will have to
check particles in the other subdomains as well.

The problem of the direct method is the complexity of the calculation, as each solid
particle will have to check with all the other particles. If P is the number of solid par-
ticles for each solid particle a check must be performed for all the other particles, that
means, to check P*(P-1) solid particles. With this, the complexity of the problem is

O P2 .

The good thing about this solution is that it is easy to implement.

2.4.2 Cell Lists
The solution is the use of 'cell lists'. This is a standard molecular dynamics technique
[2]. In the lattice region, cells of a certain dimension will be created and solid parti-
cles will be in the corresponding cell (the one that correspond to the centre of the sol-
id particle). The dimension of the cell will be chosen in order that for a particle in a

2 Could do this via single-sided communication, but decide not to because of uncertainty about
portability and performance.

Page 20

2. Analysis of the Problem

cell, that cell and the cells around it will contain all the particles that may be closer
than the critical gap. This size will be two times the radius of particles plus the criti-
cal gap (See figure 14).

Then each solid particle will be only checked with solid particles on the same cell
and the adjacent cells to this one in order to know if they are nearer than the critical
gap.

Page 21

Figure 14: Size of the cells. If size is 2*radius + criticalgap,
then if two particles are not in contiguous cells, they will be
further than the critical gap.

Figure 15: A particle will only have to check for interaction
with other particles in the cells around its cell.

2. Analysis of the Problem

For a fixed solid particle density, the number of particles inside a cell will be the
same in average, so each solid particle it will have to check for particle interaction
against a constant number of neighbors. If P is the total number of solid particles, the
problem has a complexity of O P . The constant number of neighbors depends
on size of cells and the density of the particles.

This solution is more difficult to implement, but increases greatly performance for
high number of particles.

Now, in parallel, with the cell lists method there is an easy solution for checking for
interaction with particles in around subdomains. That is that each subdomain will
have the information of solid particles in the same subdomain and also the solid par-
ticles that are in the adjacent cells to the subdomain from around subdomains.

Because all this the cell lists method will be used for this program.

2.4.3 Clusters of solid particles
When several particles are close to each other, the calculation will require that all the
solid particles will know about all the other solid particles in the cluster (see figure
5). That will be a problem if the different solid particles are owned by different sub-
domains. In that case, the subdomains that have information about any of the solid
particles of the cluster will have also to know about all the solid particles of the clus-
ter.

This case will not be developed in this project. However, some analysis and design
will be performed in order to study the possible implementation of this case in future.
A simple algorithm for this will be explained here and will be detailed in the next se-
tion 3.5. First, in each subdomain, a search for clusters will be performed. If a cluster
is found, all the particles will be saved as an object that will allow to calculate forces
for the clusters. Second, before calculating the forces for the cluster, the cluster will
be checked to know if it extends outside the subdomain. If so, communications will
be performed in order to get the information for the whole cluster. Different ways of
doing this communication are possible, they will be discussed in the next chapter.
Third, with all the information, each subdomain will perform the calculation of the
forces of the solid particles of the cluster.

2.5 Communications
For this program, several things will have to be communicated among the subdo-
mains for a correct functionality. The information to be communicated is the follow-
ing:

• Particles moving to another subdomain: when a particle leaves a subdomain to ar-
rive in another one, this information will have to be communicated between the
two subdomains.

• Liquid forces and interaction forces on a particle will have to be reduced among
subdomains if the particle is over more than one subdomain at the same time.

Page 22

2. Analysis of the Problem

• Particles outside the subdomain: a subdomain will need the information of the sol-
id particles in the cell lists around the subdomain in order to be able to calculate
all the possible interactions among the particles. These particles can be considered
as the ones at the halos of the subdomain, so a halo containing the solid particles
will have to be swapped among the subdomains.

In a direct approach, three different communications will be required every time step.
It will be possible to reduce this to two, but to understand better this, a description of
the three communications will be described before. For the correct functionality of
the program the following steps will have to be followed:

1. All subdomains will swap their halos containing the solid particles in the borders
of the subdomains. With this all the information needed to calculate the possible
interactions among the solid particles in the subdomain is available.

2. All the solid particles not in the halos will calculate the forces due to solid particle
interactions, and those due to interactions with the fluid.

3. A reduction communication will be performed in order that solid particles over
more than one subdomain will have the total liquid forces of the particle.

4. The new position of the solid particles not in the halo will be calculated.

5. If a solid particle change its position to other subdomain, a communication will be
performed to communicate subdomains about this fact.

In order to reduce the number of communications, the following steps can be fol-
lowed instead without loss of information:

1. As before, all subdomains will swap their halos containing the solid particles in
the borders of the subdomains. With this all the information needed to calculate
the possible interactions among the solid particles in the subdomain is available.

2. Also as before, all the solid particles will calculate the forces due to solid particles
interactions and the liquid forces of a solid particle. But if a solid particle is over
more than one subdomain, it will only calculate the forces from interaction with
solid particles in the same subdomain. This happens even if the particle is in the
halo.

3. A reduction communication will be performed to add all the forces and number of
points of the solid particles over more than one subdomain.

4. The new position of the solid particles are calculated even if they are in the halo
but are partially over the lattice. If the particle leaves the subdomain, no communi-
cation will be performed as in the receiving subdomain, the same particle will be
in the halo with the sames forces and it will move inside the lattice of that subdo-
main.

It can be seen that only two different communications will be needed: halo communi-
cation and forces communication. These two types will be described in more detail in
the next sections.

Page 23

2. Analysis of the Problem

2.5.1 Halo Communications
At the beginning every subdomain will contain a region of the lattice and the solid
particles whose centres are in that region. In figure 16 this situation can be observed.
While the solid particle 'B' can know about all the solid particles in the cell lists
around it, particles 'A' and 'C' will have to know about the solid particles that would
be in the halo. It can be seen that the solid particle 'C' is over two different subdo-
mains and so a communication will have to be performed to add all the force contri-
butions. The solid particle 'A' is completely over this subdomain and so it will have
to calculate all the forces without communication.

So it is possible to conclude that a halo communication will be required always be-
fore calculating the forces of the solid particles. Even if the subdomain knew about
the previous state of the halo, the communication will be needed because particles an
enter and exit the halos by the external borders. Particles that are only over the halo
and not partially over the lattice can also change position.

Once the halo communication have been performed, the situation will be the one
shown in figure 17.

Page 24

Figure 16: Subdomain before the halo swap. In the centre
(the shaded region), a region of the lattice and four solid
particles are stored. Around, the halo is still empty.

2. Analysis of the Problem

In this situation, the solid particles can be classified into three groups before begin-
ning to calculate the forces.

The first group will be the one of solid particles that are completely over the subdo-
main region of lattice. Then, like the solid particle 'A' they will calculate all the
forces caused by solid particle interactions and will calculate the liquid forces with-
out further communication.

The second group will be the one of solid particles that are completely over the halo
of the subdomain. No forces and no liquid forces will be calculated for them. This
particles will not required further communication neither.

The third group will be the one of solid particles that are partially over the subdomain
lattice and partially over the halo, independent of if the centre is in the subdomain lat-
tice or in the halo. The solid particles 'C' and 'D' belongs to this group. Particles of
this group will only calculate the forces that result from interaction with solid parti-
cles that are in the lattice subdomain and not in the halo3. Solid particle 'D' will not
calculate interaction forces with the solid particles in its own cell list as it is in the
halo. These particles will calculate the partial liquid forces in the subdomain.

3 This is not absolutely true as it will see in the design chapter in more detail. Actually, a solid parti-
cle will calculate interaction forces with all the solid particles except with the ones that are in cell
lists that owns to a halo that will be swappe in the same direction as that solid particle will be com-
municated to accumulate interaction forces and liquid forces. In practice it is almost the same as
stated before but for some exceptions.

Page 25

Figure 17: Subdomain after the halo swap.

2. Analysis of the Problem

2.5.2 Force Communications
The trivial case is when a solid particle is completely within one subdomain, then the
liquid points inside the solid particle will be determined by only one processor and
stored in the particle. The problem arises when the particle is over more than one
subdomain. When a solid particle is over more than one subdomain, it will calculate
partial liquid forces in each subdomain and then communicate in order that the solid
particle will gather the liquid forces of each subdomain and add this information to
know the total forces on it.

It is also needed to communicate the partial forces because of solid particle interac-
tions for the particles that are in the boundaries of the subdomains.

There are also two ways to perform this communication:

• It is possible to perform this communication at each iteration. But that means that
with the previous communication, two communications will be performed at each
iteration.

• As each subdomain knows about particles that are in the boundaries, the commu-
nication can only be performed when necessary as the receiving and sending sub-
domain will know a priori if the communication will be necessary or not. This will
reduce the number of communications when no particles are at the boundaries.

The second method will be used in this project.

So now taking as a starting point the final situation explained in the previous section,
there are three groups of solid particles.

First, consider particles that are completely inside the lattice region of the subdomain.
No action is required for this solid particles. After forces communication for other
particles is performed, their position will be updated.

Second, consider solid particles that are completely over the halo region of the sub-
domain. Again, no action is required for these solid particles. After this communica-
tion is performed, they will not require any position update as they will remain in the
halo for the next iteration. It is supposed that if a solid particle is completely in the
halo, its centre will not move to the lattice region in the next iteration; particles are
supposed to move smoothly and if not, results will be invalid.

Third, consider solid particles that are partially over the lattice region of the subdo-
main and partially over the halo. These solid particles only have partial results for the
interaction forces and for the liquid forces of them. So these particles will perform a
communication to accumulate the forces. This communication can be in one or in
two dimensions. If the solid particle is in a side of the halo, then a one dimension
communication will be performed, but if it is in a corner of the halo of the subdo-
main, a two dimension communication will be performed in order that all the subdo-
mains containing that solid particle will add all the forces. This will be described in
more detail in the design chapter. It is possible to see the situation before the commu-
nication for one dimension in figure 17.

Page 26

2. Analysis of the Problem

After every solid particle has all the partial forces, their position and velocity can be
updated. It may happen that a particle leaves one subdomain and enters another. If
this happens in one subdomain, the particle will move and leave the lattice region of
the subdomain, so it will be deleted of that subdomain. In the other subdomain, as all
the copies of the solid particle have the same forces, its position will be updated in
the same way, but now it will leaves the halo to enter the lattice region of the subdo-
main. So no explicit communication will be needed to notify when particles leaves or
enter a new subdomain as it will be automatically updated. It is possible to see this in
figure 19 when the forces are added and both copies of the particle have the same
force addition. In figure 20 after the update of the position, a copy of the solid parti-
cle leaves the lattice region of the subdomain and the other copy enters in the lattice
region of the other subdomain.

Page 27

Figure 18: Two copies of the same solid particle in two
different subdomains. Each copy has different partial
forces before communication. When the forces for the two
copies are added, then each copy will have the interaction
forces from each of the nine cell lists.

2. Analysis of the Problem

Page 28

Figure 19: The two copies of a solid
particle in different subdomains when all
the forces are added.

Figure 20: The two copies of a solid
particle in different subdomains after the
update of the position. The one on the left
subdomain should be deleted.

3. Design

3. Design
In this chapter, it will be explained how the final program will be designed from the
analysis done in the previous chapter. Important parts of the final code will be shown
as examples of how the design is implemented.

3.1 Program structure
The program is composed of five modular units:

• Constants. A header file with the most important constants that will be used in the
program.

• Particles. A header and a .c file containing structures and functions to work with
solid particles.

• Cell lists. A header and a .c file containing structures and functions to work with
cell lists.

• MPI. A header and a .c file containing structures and functions to work with MPI
communications, but without calling explicitly MPI functions in the program.

• Main program. A .c file that coordinates all the program.

The constants part will be explained in the next section. The particle, cell list and
MPI parts will be explained in following sections. Here an explanation of the main
program part is given.

In the main program, first, the MPI is initialized using the structures and functions of
the MPI part.
int main(int argc, char *argv[]){
 process *p; // Struct that will contain process specific
 // information
 MPIWrapperInit(argc, argv); // Initialize MPI
 p = MPIWrapperInitProcess(); // Initialize the structure of the
 // process and all the necessary
 // things for MPI

Then, the solid particles and the cell list in each subdomain is created and initialized.
 // Creation of the particles
 a = particleCreate(id,xPos,yPos,a,xVel,yVel);
 ...
 // Creation of a particle list
 list = particleListCreate();
 // Add the particles to the particle list
 addParticle(list,a);
 ...
 // Create the cell list and add the particles of the particle list to it.
 cell = cellListCreate((XSIZE/((float)p->xDim)), (YSIZE/((float)p->yDim)),
 (XSIZE/((float)p->xDim))*p->x,
 (YSIZE/((float)p->yDim))*p->y, list);

Page 29

3. Design

After that, the main loop is performed. In this loop, the following steps are followed:
swap the halos, calculate the forces of the solid particles and the liquid forces of
them, accumulate forces of the solid particles and liquid forces of solid particles that
are over more than one subdomain, and iterate the solid particles (that means calcu-
late their new positions).
 // Main loop of the program
 for(i = 0; i < iterNum; i++){
 cellListSwapHalos(cell, p);
 cellListCalculateForces(cell);
 cellListAcumulateForces(cell, p);
 cellListIteration(cell, INCT);
 }

Then, results are printed.
 // Print contents of the cell list
 printCellList(cell);

At the end, the MPI is finalized.
 MPIWrapperEnd(); // Finalize MPI

With this general vision of the structure of the program, everything will be described
in the following in detail.

3.2 Main Constants
For this program, some global constants are required and they will be stored in a in-
clude file “constants.h” in order that they can be changed easily. These constants are:

• XSIZE: is the size of the lattice in the x dimension.

• YSIZE: is the size of the lattice in the y dimension.

• DELTAX: is the separation between lattice points.

• CRITICALGAP: is the maximum distance between two solid particles when they
will present a interaction between them.

• INCT: is the increment of time between iterations of the program.

• RADIUSMAX: is the maximum radius that a particle will have.

The constants CRITICALGAP and RADIUSMAX will be used to determine the size
of the cells of the cell lists, as show in figure 14 in the previous chapter. The size of
the cells of the cell lists are not exactly the size stated in section 2.4.2 but at least that
size. The real size will depend on the XSIZE, YSIZE and the number of processors.
This will be explained in more detail in the cell lists section.

XSIZE, YSIZE and INCT are only used in the main program. RADIUSMAX is only
used in the creation of a cellList to calculate the size of the cells. CRITICALGAP is
used in the creation of a cellList to calculate the size of the cells and to determine if
a force will have to be calculated in the particleCalculateForcesSame and

Page 30

3. Design

particleCalculateForcesTo functions. DELTAX is only used in the par-
ticleCalculatePoints function to calculate the number of lattice points in-
side a solid particle.

The constant HALO which refers to the number of cells in the halo has the value 1, is
used to make more clear the code. The value of HALO should not be changed.

3.3 Data Structures
For this program, five structures will be used, two for particles, one for particles lists,
one for cell lists and one for an MPI process. They are described in detail in the next
subsections.

3.3.1 Solid Particles
A solid particle will be composed of the following data:

An identifier: a value that identifies uniquely the solid particle. The centre of the par-
ticle is a pair (for the 2 dimensional problem) of floating point numbers that represent
the position of the solid particle on each coordinate. The radius is also a floating
point number that is the radius of the solid particle. The velocity consists of two
floating point numbers that represent the current velocity of the solid particle in both
coordinates of the lattice. The force is two floating point numbers that represent the
current forces applied to the solid particle for both coordinates of the lattice. The
force will determine the new velocity. The total lattice points inside the solid particle
is an integer that represents the force on the particle from the fluid.

More data will be necessary for parallelization purposes because of the need to calcu-
late partial and total values of forces.

Also, as it will be seen in the next subsection 3.3.2, a pointer for the next particle of
the particle list will be required. With all this the structure for the particle will be as
following:
// Struct of particles
struct _particle{
 int id; // Identifier of the particle
 float x, y; // X and Y coordinates
 float a; // Radius of the particle
 float u, v; // Velocities of the particle
 // in the x and y axes
 float partialfx, partialfy; // Partial forces
 float totalfx, totalfy; // Total forces
 int totalPoints; // Total number of points
 int partialPoints; // Partial number of points
 struct _particle* next; // Pointer to next particle
};
typedef struct _particle particle;

Page 31

3. Design

As in MPI it is not possible to send linked lists as messages, another structure will be
provided for particles that will be used when they will be sent in MPI messages. This
structure will not have the value of the pointer to the next particle but it will not also
have the values for the total forces and lattice points inside the particle as only the
partial values of those data will be sent. This structure is as follows:
// Struct of a particle used to be sent
struct _particleItem{
 int id; // Identifier of the particle
 float x, y; // X and Y coordinates
 float a; // Radius of the particle
 float u, v; // Velocities of the particle
 // in the x and y axes
 float partialfx, partialfy; // Partial forces
 int partialPoints; // Partial number of points
};
typedef struct _particleItem particleItem;

A method for creating particles is provided with the following prototype:
particle* particleCreate(int id, float x, float y, float a, float u, float v);

It will be used to create particles with an identifier, two coordinates, a radius and a
initial velocity.

3.3.2 Particle Lists
For storing the particles in a region4 there are two possible options: to store them in
an array or in a linked list. Each option has advantages and disadvantages that are ex-
plained here.

The most direct way would be to use an array to store all the particles in a certain re-
gion. This will have the advantage that an array is the format that particles will have
to to be sent in an MPI message. The problem is that the particles will change from a
particle list to another particle list during the execution of the program, so if an array
will be used, it will have to have the ability to resize. In addition, if a particle leaves
the region (and so the list) it is time-consuming to shift all the other particles in the
array to eliminate the empty position in the array.

If a linked list is used, the advantage is that the problems of resizing and holes will
not appear. The problem is that before sending particles, they will have to be saved in
an array in order that it will be possible to send them in a MPI message.

It must be noticed that this does not mean that with the array solution there is no need
to save the particles before being sent to another array. The list of particles in a re-
gion and the particles that are needed to be sent may not be the same.

With this, the linked list solution is chosen, but it will be possible to implement the
array solution only making modifications in the particle part of the program.

4 This region will be a cell of the cell list for this program.

Page 32

3. Design

In this program, a particle list will contain the particles that are inside a cell of a cell
list. This means that if a particle moves outside the region of the cell, it will have to
change to the corresponding cell. Different solutions to do this will be explained in
the cell lists subsection, but the chosen solution requires that each cell will have in-
formation about the surrounding cells. This information will be a pointer to that cell.
So the structure of the particle lists will be as follows.
// Struct of a particle list used as cells in the cell lists
struct _particleList{
 int size; // Number of particles
 struct _particleList* N; // Cell at the North of this cell
 struct _particleList* NE; // Cell at the NE of this cell
 struct _particleList* E; // Cell at the East of this cell
 struct _particleList* SE; // Cell at the SE of this cell
 struct _particleList* S; // Cell at the South of this cell
 struct _particleList* SW; // Cell at the SW of this cell
 struct _particleList* W; // Cell at the West of this cell
 struct _particleList* NW; // Cell at the NW of this cell
 struct _particle* list; // Pointer to the first particle
};
typedef struct _particleList particleList;

A method for creating lists of particles is provided with the following prototype:
particleList* particleListCreate();

It will be used to create empty lists of particles. To add particles to the lists, the fol-
lowing method will be used:
int addParticle(particleList* l, particle* p);

That will add the particle p to the particle list l, if l or p are NULL, no particle is
added.

Several methods are created to deal with particle lists which can be seen in Appendix
A in the particle.h section. The most important ones will be described in this chapter
and can be classified as: constructors, add and remove particles, linked list to array
and array to linked list, forces and points related, movement of particles, and printing
methods.

3.3.3 Cell Lists
The cell list structure has to meet some requirements. First of all, if a particle moves
and it changes its position from one cell to another, the particle will have to change to
the other cell. Also, for calculating interacting forces of a particle, it should be easy
to find the cells around the particle to check for interaction forces with all the parti-
cles in those cells.

Two possible solutions have been found for this (but more can exist) and are ex-
plained here.

The first one is to make the cell list a two dimensional array. Then for moving parti-
cles, iterate the particles updating their position. After that, extract all the particles
that are not in the cell they should be, and add the particles to the cell list again in its

Page 33

3. Design

correct position. It should be done in a high level (in the cell list methods) as the cell
will not know about the cells around. For calculating interaction forces, it also should
be done from a high level as the cell does not know about the around cells that are
needed to calculate the interaction forces. This way can present some problems as not
always all the surrounding cell are required.

The second method is to create links in every cell that will point to the surrounding
cells. With this method, after updating the position of the particles, they can move to
the corresponding cell depending on the link values. For calculating interaction
forces, the calculation can be done at a lower level as every cell will know about all
the surrounding cells. For cases when not all the surrounding cells are needed, the
links can be changed to deal with those circumstances.

The second approach has been taken for this program. As stated in the previous sub-
section, every cell (that is a particle list) has the ability to save information about the
surrounding cells.

Before explaing in more detail this solution, some conventions used are stated. In the
whole program, the x and y coordinates are present; the x coordinate will extends
horizontally from the left to the right. So 'left', 'West' and 'W' will refer to the x coor-
dinate towards the negative values; and 'right', 'East' and 'E' will refer to the same to-
wards the positive values. The y coordinates will extent vertically from down to up.
So 'up', 'North' and 'N' will refer y coordinates towards the positive values and 'down',
'S' and 'South' will refer the same towards the negative values. Also, in all the pro-
gram when a i variable is used as the index in an array, it will be used for an x coor-
dinate and the j variable will be used for a y coordinate.

With this information and knowing from last chapter that also a halo will be created
for each cell list, it is easy to describe the cell list structure. Here is the code:
// Struct of cell lists
struct _cellList{
 float xsize; // Size in the x dimension
 float ysize; // Size in the y dimension
 float x0, y0; // Lower coordinates
 float x1, y1; // Higher coordinates (lower coordinate + size)
 int xDim, yDim; // Number of cell in each dimension
 particleList** list; // Two dimensional array of cells
};
typedef struct _cellList cellList;

A method for creating cell lists is provided with the following prototype:
cellList* cellListCreate(float xsize, float ysize, float x0, float y0,
 particleList* list);

This creates cell lists with size xsize and ysize with origin coordinates x0 and
y0 and including the particles in list. If some of these particles are not in the re-
gion of the cell list, they will not be included in the cell list. The cell list created will
also have a halo of cells.

The links of the cell will be created in the constructor, and will be modified by the
following methods:

Page 34

3. Design

int cellListSetLinks(cellList* c);
int cellListSetLinksForForce(cellList* c);
int cellListSetLinksForMove(cellList* c);

The first one is the one used in the constructor, the second one sets the links for being
able to calculate forces and the third one sets the links to allow movement of the par-
ticles in the cell lists. Now this settings will be explained.

First, the links for moving particles will have to allow particles not in the halo to
change to other cells not in the halo. This is because particles moving to cells in the
halo will be deleted (See figures 19 and 20 for explanation). These links are shown in
figure 21.

Three different types of cells inside the halo can be found:

The first will be called MNA (for: Movement Not in halo A) and is when the cell is
not at the border of the lattice. These cells will link to all the cells around them,
which can be seen in figure 22.

The second will be called MNB and is when the cell is in the border of the lattice but
not in a corner. These cells will link to all cells around them except in the direction of
the halo (shown in figure 23).

The third will be called MNC and is when the cell is in the corner of the lattice.
These cells will link only in directions where there is no halo (shown in figure 24).

Page 35

Figure 21: Links required by the cells not in the halo
for movement.

3. Design

Second, the links for moving will have to allow particles in the halo to change to
other cells that are not in the halo, but not to cells in the halo. This is because as be-
fore, particles that move to positions in the halo will be deleted. These links are
shown in figure 25.

Page 36

Figure 22: Links needed for
movement by a cell not in the borders
of the lattice.

Figure 23: Links needed for
movement by a cell in the borders of
the lattice.

Figure 24: Links needed for movement
by a cell in the corners of the lattice.

3. Design

Again, three different types of cell in the halo can be found:

The first will be called MHA (for: Movement in Halo A) and is when the cell is not
in the two cells nearest to the corner. This can be seen in figure 26.

The second will be called MHB and is when the cell is in the second cell nearest to
the corner (shown in figure 27).

The third will be called MHC and is when the cell is in the corner (shown in figure
28).

Page 37

Figure 25: Links required by the cells in the halo for
movement.

3. Design

So, before any iterations to update the position of the particles, all the links of the
cells will have to be in the shown states.

For calculating interaction forces, this is required:

First, cells not in the halo will have to know about all the cells around them. These
links can be seen in figure 29.

Page 38

Figure 26: Links
needed for
movement by a
cell that is not in
the two cells
nearest to the
corner.

Figure 27: Links
needed for
movement by a
cell that is in the
second cell
nearest to the
corner.

Figure 28: Links
needed for
movement by a
cell that is in the
corner.

Figure 29: Links required by the cells not in the
halo for calculation of interaction forces.

3. Design

Here only one type of cell are and will be called FNA (for: Forces Not in halo A), it
is the same as the one show in figure 22.

Second, for cell in the halo, again, they will have to know about all the cells around
them, but taking in consideration that they will not know anything about cells outside
the cell list. So this links are showed in figure 30.

Here two types of cells are found:

The first will be called FHA (for: Force in Halo A) and is when the cell is not in the
corner. It can be seen in figure 31.

The second will be called FHB and is when the cell is in the corner. It is show in fig-
ure 32.

Page 39

Figure 30: Links required by the cells in the halo for
calculation of interaction forces.

Figure 31:
Links needed
for forces by a
cell that in a
side.

Figure 32:
Links needed
for forces by a
cell that in a
corner.

3. Design

So, before calculating the interaction forces of the particles, all the particles will have
to be in the shown states.

This change will have to be performed each iteration, and to change every cell will be
inefficient, but taking care it is possible to change only the following: for particles
not in the halo, only cells of type MNB and MNC have to be changed to be like cells
FNA, that means to change the links of less cells than the number of halo cells. For
cells in the halo, cell of type MHB will have to change to cells of type FHA, and cells
of type MHC will have to change to cells of type FHB; that means to change the links
of 12 cells in total for halos (3 in each corner).

The implementation of all the links settings can be tedious, but it will help greatly
following work.

Several methods are created to deal with cell lists, they can be seen in Appendix A in
the cellList.h section. The most important ones will be described in this chapter and
can be classified as: link setters, add and remove particles, get and set halos, forces
and points related, main and printing methods.

3.3.4 MPI Process
A structure will be created that will contain all the information that is specific to each
process and also all the MPI specific data needed in the program. The methods that
use this structure are the only methods that will use real MPI functions in the pro-
gram. This allows the rest of the program to do not have to deal with real MPI func-
tions.

This structure is shown here:
struct _process{
 int myid; // Identifier of the process
 int numprocs; // Total number of processes
 int x, y; // Coordinates of the process
 // in a 2 dimensional decomposition
 int xDim, yDim; // X and Y dimensions of the
 // decomposition
 MPI_Comm topology; // The 2 dimensional decomposition
 // topology
 MPI_Datatype MPIParticle; // The datatype definition of a
 // particleItem needed to send MPI
 // messages containing this type
 // of data
};
typedef struct _process process;

As seen, it contains information to identify the process and its coordinates, the total
number of processes and the dimension of the decomposition, and at last MPI data
necessary for sending MPI messages in this decomposition.

To initialize an MPI program, two methods are used that have the following proto-
types:

Page 40

3. Design

void MPIWrapperInit(int argc, char *argv[]);
process* MPIWrapperInitProcess();

The first will initialize the MPI program and the second will initialize the process
structure.

To finish the MPI program, the following method will be used:
void MPIWrapperEnd();

For sending data among process, four methods are created, e.g.:
particleItem* SendUpReceiveDown(process* p, particleItem* send, int size,
 int* receiveSize);

This method will send up an array of particleItems of size size and receive in
the opposite direction an array of particleItems that will be returned and the
reciveSize value will be set to its size.

The other three methods are analogous.
particleItem* SendDownReceiveUp(process* p, particleItem* send, int size,
 int* receiveSize);
particleItem* SendRightReceiveLeft(process* p, particleItem* send, int size,
 int* receiveSize);
particleItem* SendLeftReceiveRight(process* p, particleItem* send, int size,
 int* receiveSize);

No more methods are declared for this structure.

3.4 Communication
Two different communications will be performed in the program, one communica-
tion for halo swaps and another one to accumulate interaction forces and number of
lattice points of solid particles that are over more than one subdomain. This means
that the halo swap communication will be always performed, but the accumulation
communication will be only performed when necessary. In this section, both commu-
nications will be explained in detail. Other sections of the program must also be con-
sidered in order that these communications succeed.

3.4.1 MPI Communications
Data that will have to be communicated by MPI in this program are lists of particles.
There is an inherent problem associated with the solution of using linked lists for the
lists of particles, that is, MPI cannot send linked lists but only arrays. To solve this,
before each communication, particles that will have to be sent will be copied to an
array. If the solution of using arrays instead of linked lists was taken (section 3.3.2),
there will be also the need to copy the needed particles to other array, so this is not a
backdraw of the solution taken.

For help in transforming linked lists to arrays, and arrays to linked lists, two methods
are provided:
int particleListToArray(particleList* l, particleItem* a, float x0, float y0);
particleList* particleArrayToList(particleItem* a, int size, float x0, float y0);

Page 41

3. Design

These methods will transform a linked list l to an array a and an array a to a linked
list l. There is also another problem because of the periodic boundaries of the lattice.
This is that if a particle will be communicated from a boundary of the lattice to the
opposite one, the coordinates of the particle will not match the ones at the other side.
Absolute coordinates of particles will not be sent but coordinates relative to the cur-
rent border of the subdomain. That is why the x0 and y0 arguments are provided to
these methods. For example, if the lattice is of size 12x12, a particle in position
(11,5) will have to be sent to the halo of the opposite subdomain, the value of x0 will
be the one at the boundaries of the region, 12 in this case. The sent particle will have
a x coordinate of 11-12 = -1. At the other subdomain, the value of x0 will be the one
at the boundaries of the region that is 0, so when the particle is received, its new x
coordinate will be -1+0= -1 that will be the correct coordinate because periodic
boundaries. This can be seen in figure 33.

These arrays of particles will be sent using the methods explained in the previous
section. Their internals are the same except for the coordinate and direction of the
communication. It is as follows:
 // Calculate source and destiny subdomains
 MPI_Cart_shift(p->topology, 1, 1, &sour, &dest);

 // Send message to the destiny subdomain
 MPI_Issend(send, size, p->MPIParticle,dest,0,p->topology,&r1);
 // Check for receiving message and find its size
 MPI_Probe(sour, 0, p->topology, &s1);
 MPI_Get_count(&s1, p->MPIParticle, receiveSize);

 // Allocate memory for receiving message
 receive = (particleItem*)malloc(*receiveSize*sizeof(particleItem));

Page 42

Figure 33: The particle A in the right with x coordinates 11, will be sent because of periodic
boundaries to the halo in the left subdomain, where the x coordinate will have to be -1. This is
resolved sending relative coordinates to the border of the lattice region.

3. Design

 // Receive message from source
 MPI_Recv(receive, *receiveSize, p->MPIParticle, sour, 0, p->topology, &s2);

 // Wait for sending completion
 MPI_Wait(&r1, &s3);

So, after finding the source and destination subdomains for the message, the message
is sent by a non blocking send. If then checks for received message and find the size
of the receiving message, enough memory for it is allocated and the message is re-
ceived. At the end, message send completion is waited for .

3.4.2 Halo Regions
At the beginning of each iteration, halos are swapped in two dimensions as shown in
figure 8 (communications due to periodic boundaries are not shown in the figure).
The information of the corners of the halos is swapped by this two dimension com-
munication as shown in figure 9.

For swapping halos, the following method is provided:
int cellListSwapHalos(cellList* c, process* p);

This method will perform the following steps:

First, it will clear the halos of particles from previous iterations. Then it will take all
the cell that will be used to send a halo, put all the particles in an array and send them
to the corresponding subdomain. After that, it will receive an array of particles from
the opposite side and put them in the corresponding halo cells. This will be repeated
for the four sides.

After this communication is done, all the halos contain the corresponding particles
and it is possible to calculate interaction forces and the number of lattice points in-
side particles.

3.4.3 Adding forces
The total force from fluid and interactions on each particle is required. When calcu-
lating this for particles entirely in one subdomain no communication is needed. Some
extra considerations will have to be taken in account for those particles not entirely in
one subdomain that will require communication for calculating the total forces.

After swapping the halos, the following method will be called:
int cellListCalculateForces(cellList* c);

This method will do the following:

int cellListCalculateForces(cellList* c){
 // Set links of the cell list to calculate forces
 cellListSetLinksForForce(c);
 // Set forces of the particles to 0
 cellListClearForces(c);

Page 43

3. Design

 // Calculate interaction forces in the same cell
 cellListCalculateForcesSameCell(c);
 // Calculate interaction forces with around cells
 cellListCalculateForcesAroundCells(c);
 // Calculate number of points inside particle
 cellListCalculatePoints(c);
}

First, it will set the links of the cell list to calculate forces. Then it will set the forces
of all particles to 0. After that it will calculate the interaction forces with particles in
the same cell. Then it will calculate interaction forces with particles in around cells.
At last it will calculate the number of lattice points that are inside each particle.

Every particle calculate the number of lattice points inside the particle including the
ones in the halo, but all of them should only consider the lattice points that are in the
lattice region that corresponds to the current subdomain. That is why for calculating
the lattice points for a particle, using the following method the lower and highest co-
ordinates of the lattice region are provided:
int particleCalculatePoints(particle* p, float x0, float y0, float x1, float y1);

Calculating interaction forces will require more considerations. First, is possible to
classify according each particle in different positions. For each coordinate, the fol-
lowing positions exist:

• Particles whose centres are in the halo.

A. Particles whose centres are further to the lattice region than their radius.

B. Particles whose centres are nearer to the lattice region than their radius.

• Particles which centres are not in the halo.

C. Particles whose centres are further to the lattice region than their radius.

D. Particles whose centres are nearer to the lattice region than their radius.

With combinations for both dimensions, 16 possible cases exist (AA, AB, AC...). If it
is thought that these positions are symmetric, then, 7 positions exist for every coordi-
nate A, B, C, D, E (symmetric of C at the opposite side), F (symmetric of B at the op-
posite side) and E (symmetric of A at the opposite side). And 47 possibles cases exit
combining both coordinates. From them, there will be 26 cases that will require dif-
ferent cells for calculating interaction forces. That is because those 47 cases compris-
es 22 different cases where the particle is completely in the halo (those cases contain-
ing an A or E case in any coordinate: AA, AC, DE...), and no calculation will be per-
formed for those particles, so no difference among those cases is appreciated.

In figure 34 can be seen all those cases (except the ones of a particle completely in
the halo) the figure represents 4 subdomains and 9 particles on them, but because
halo swap, they are replicated in different subdomains.

Page 44

3. Design

A particle for each case is shown with arrows representing the direction of the cells
around the particle that should be used to calculate interactions. It is easy to check for
correctness of the arrows chosen because it can be seen that, for example, particle FD
is a copy of the particle CD but in a different subdomain due to swapping the halos.
This is applicable to all the particles in the figure. In fact, of the 25 particles in the
figure, there are only 9, the rest are duplicates in the halos. Then, for particle CD, 5
cells around it are checked for interaction forces, and for its unique duplicate FD 3
cells around are checked for interaction forces, all this add the 8 necessary cells
around to look for interaction forces. A particle will only have to check for interac-
tion forces in its own cell if that cell is not in the halo; if not, those forces will be du-
plicated. A more difficult example is particle CE; it has three copies that are CB, FB
and FE. CE looks for 3 cells, CB for 2, FB for 1 and FE for 2, that again are in total
the 8 necessary surrounding cells.

Page 45

Figure 34: Possible particle position cases and directions to where interaction forces will be
looked for in a 4 subdomain representation with 9 particles and their copies because of halo
swap.

3. Design

After following, two notices must be made.

From figure 34, it is possible to see that there exists the possibility that a particle like
FB is not over any region of the lattice region of the subdomain. Even in that case,
this particle will look for forces in the stated directions. That is because even if the
particle is not over any lattice region, if it is of the type FB, that implies that three of
types CB, CE and FE will exists in other subdomains and will require add interaction
forces.

Also, from the picture, it seems, that no halo cells are considered for looking for in-
teraction forces. That is not actually true as it can be seen in picture 35.

In the figure 35, a particle of type ED and its copy of type BD will look for interac-
tion forces in halo cells as no vertical communication will be required.

From all this the following conclusions can be extracted:

• Only particles that are in a cell not in the halo will calculate interaction forces in
their cells. So the method cellListCalculateForcesSameCell(c), will
be applied only to cells not in the halo.

• A particle not of the type DD and not completely in the halo will have to perform
a communication, it can be one or two dimensional communication, depending of
the type of particle.

• A particle, when looking for interaction forces in the around cell, will look for all
cells that are not in a halo in the direction it will have to communicate for adding
forces.

With these conclusions it will be possible to implement a function to calculate inter-
action forces without considering every type of particle position. Here this way will
be summarized.

Page 46

Figure 35: Two copies of the same particle may look for interaction forces in the halo cells.

3. Design

This algorithm is implemented in the method:
int particleListCalculateForcesAround(particleList* l, float x0, float y0,
 float x1, float y1);

First, some variables are required:
 int inRLHalo; // Particle in the right or left halo
 int inTBHalo; // Particle in the top or bottom halo
 int upComm; // Up communication will be performed
 int downComm; // Down communication will be performed
 int rightComm; // Right communication will be performed
 int leftComm; // Left communication will be performed

And they will be initialized to the correct values; 0 is for false and 1 is for true.

After that, each direction will be used for calculating interaction forces if it accom-
plish the stated conditions:
 if((!upComm) && (!inRLHalo)){
 particleCalculateForcesTo(tmp, l->N);
 }
 if((!downComm) && (!inRLHalo)){
 particleCalculateForcesTo(tmp, l->S);
 }
 if((!rightComm) && (!inTBHalo)){
 particleCalculateForcesTo(tmp, l->E);
 }
 if((!leftComm) && (!inTBHalo)){
 particleCalculateForcesTo(tmp, l->W);
 }
 if((!rightComm) && (!upComm)){
 particleCalculateForcesTo(tmp, l->NE);
 }
 if((!rightComm) && (!downComm)){
 particleCalculateForcesTo(tmp, l->SE);
 }
 if((!leftComm) && (!upComm)){
 particleCalculateForcesTo(tmp, l->NW);
 }
 if((!leftComm) && (!downComm)){
 particleCalculateForcesTo(tmp, l->SW);
 }

Now all the partial interaction forces and lattice points are calculated, so they have to
be communicated.

For this, the following method will be used:
int cellListAcumulateForces(cellList* c, process* p);

It is very similar to the method used for swap the halos. This performs the following
steps:

First, it will take all the cell that will be used to send a halo, extract all the particles
that will need to accumulate forces in that direction, put them in an array and send
them to the corresponding subdomain. After that, it will receive an array of particles
from the opposite side and instead of add the particles to the cell list, they will be ac-
cumulated, that means that particles with the same identifier will add its partial

Page 47

3. Design

forces and number of points and save the addition in the total forces and total points
values (that is why particles required an identifier). This will be repeated for opposite
direction. After this, total forces and total points will be stored also as partial results.
Then two more communication perpendicular to the previous ones will be performed.

The need of changing the total results to the partial ones between horizontal and ver-
tical communications is because it is needed that partial results between diagonal
subdomains has also to be added and this is done in the way shown in the figure 9.

After this, all particles has the necessary forces and the number of points that was re-
quired for update its position. This is done by the following method:
int cellListIteration(cellList* c, float inct);

First, links of the cell list is changed for movement with the method:
int cellListSetLinksForMove(cellList* c);

Then each particle update its velocity according to the previous velocity and the new
forces; and after that each particle will check in case they will have to move to other
cell in the cell list.

3.4.4 Memory Management
The memory management of this program can be tricky as memory is allocated in ev-
ery interaction. So all the unused memory should be freed before the next iteration.

When particle halos are swapped halos are first cleared and particles in the halos
should be freed. Then, the arrays used for sending and receiving messages should be
freed after using them as they only store temporary data. Also, when an array of parti-
cles is received, this is converted to a temporary particle list and then added to the
cell list, so these temporary lists should also be freed.

When particles calculate interaction forces and lattice points, no new memory is allo-
cated, so nothing needs to be freed.

When communication to accumulate forces is performed, as when particle halos were
swapped, the arrays used for communications should be freed. Also, temporary parti-
cle lists are used than should be freed. It is important to notice that for accumulating
forces, more than one copy of particles are used and after adding the corresponding
values, the copies obtained from communications should also be freed.

At last, when particles are updated no more memory is allocated, but if a particle
leaves the lattice region, it should be also freed.

3.5 Clusters
In the analysis chapter (section 2.4.3), an algorithm to deal with cluster of particles
was introduced. Here the details of how the communication of the cluster is per-
formed are given.

Two methods can be used.

Page 48

3. Design

3.5.1 Reduction Method
For this method, two communications will be performed.

After each subdomain knows if it has a cluster inside and if the cluster extends out-
side the subdomain in any direction, this information will be broadcast to all the sub-
domains. After that, each subdomain will be able to determine which subdomains
have parts of the cluster.

Then, all the particles of the cluster will be broadcast to the subdomains that have a
part of the cluster. So after that, every subdomain involved will have the information
of all particles of the cluster. Ultimately, a cluster might involve the whole system; in
that case the situation will be the same as replicated data.

3.5.2 Communications Method
For this method, each subdomain that contains a part of the cluster will send the par-
ticles of the cluster to the subdomain that will continue the cluster around it. The sub-
domain will receive messages with cluster particles from surrounding subdomains,
add its particles of the cluster and send the message again. The subdomain receives
message from other subdomains until it receives the message it sent originally.

There are two possible classes of subdomains. The ones that only have a side that
will extend the cluster and the ones that will have more than one side where the clus-
ter will be extended.

The first class will send a message to one side, and will receive messages also from
that side. If this is not the message the subdomain sent at the beginning , it will add
its cluster particles and send back to the same side the message that was received. If
the subdomain receives its original message again it has all the particles in the clus-
ter. It is possible to see this in figure 36.

Page 49

3. Design

In figure 36, the subdomain 1 will send a message with the particle A to subdomain
2. The subdomain 2 will do the same and will send a message with particles B and C
to the subdomain 1. After this, subdomain 1 receives a message from 2, it was not the
original message the subdomain sent, so it will add to the message particle A and
send back to subdomain 2 the message, now with particles A, B and C. Subdomain 2
will receive a message from subdomain 1 that is no the original message it sent, so
particles B and C will be added to the message and sent back to subdomain 1. At the
end, subdomain 1 receives the first message it sent with particles A, B and C, and
subdomain 2 receives the original message it sent with particles A, B and C. The
communication is finished and both subdomains have the information of all the parti-
cles in the cluster.

The second class will send a message to one of the sides that has continuity for the
cluster. Then until the original message is returned, if a message is received that is
not the original message, it will add its particles to the message and send the message
to another side of the subdomain where the cluster extends. When the message is re-
turned, the subdomain will send the message to another side until the message has
been sent to all the sides. After this, the message is sent back to the side that first re-
ceived the message. When the original message the subdomain sent at the beginning
is returned, it is sent to another side to repeat the same process until it has been sent
to all sides, then the subdomain has all the particles of the cluster.

Each subdomain receiving a message will copy the particles that are in the messages
with care to not replicate them. At the end, those copies will have all the particles in
the cluster.

Page 50

Figure 36: A cluster in two subdomains

3. Design

Special attention should be taken when clusters have special shapes like rings (in-
cluding those created because periodic boundaries), etc.

3.6 Testing Strategy
This project consists in the creation of a 'toy' model that will simulate solid particles
in a liquid. The program will distribute the work involved with both fluid and parti-
cles by domain decomposition using the MPI library. In order to achieve the final
program, the following steps will be followed:

• creation of a serial program that will deal with one particle,

• creation of an MPI program that will deal with one particle,

• creation of an MPI program that will deal with more than one particle.

Each of these steps will add more requirements to the previous one.

Tests will be performed in order to check the correct results from the created pro-
grams each time one of these steps are reached.

The program will be tested on one processor to check different things like particle
changing cells, periodic boundaries, particle interactions, correct movement of parti-
cles. When this work with one processor, more processors will be used and check the
results with the one processor results.

Also tests to check for memory leaks have been performed, guarantying that the final
program will not increase its size in memory over its execution.

The program uses standard C, standard C libraries and the MPI library, so no porta-
bility problems should appear.

Page 51

4. Discussion and Summary

4. Discussion and Summary

4.1 Discussion
If the concepts of this program are used in other programs that involve domain de-
composition and data that moves from one subdomain to another, some more general
requirements may be needed to fit these concepts to the other program. Here some
possible modifications are commented on.

4.1.1 Badly Distributed Problems
This may be the most interesting one as it can also be applied to this project.

Two cases are possible:

It is possible that most of the particles in the lattice are concentrated in a few subdo-
mains forming a cluster. In this case, few domains are performing all the calculation
required for particles while most do not perform calculation for particles.

It may seem, that using no domain decomposition may help, but without domain de-
composition, the cell list method cannot be used (unless replicated data is also used)
and that increases the complexity of the problem as seen in section 2.4.

This can be solved using the previously described method with the cluster solution of
the reduction method modified in the following way:

After each subdomain knows if it has a cluster inside and if the cluster extends out-
side the subdomain in any direction, this information will be broadcast to all the sub-
domains. After that, each subdomain will be able to determine which subdomains
have parts of the cluster it has in part. But this calculation will be performed by all
subdomains, so at the end, every subdomain will know about distribution of every
cluster.

Then, all the particles of the cluster will be broadcast to all subdomains. So after that,
every subdomain will have the information of all particles in all clusters. Then , cal-
culation of forces of particles in clusters can be done in a distributed way and every
subdomain will be in charge of a same number of particles.

After calculations are performed, results are sent to the subdomains that need the re-
sults to update the particles.

It is also possible that most of particles are concentrated in some subdomains but not
forming clusters. Then two approaches are possible:

It is possible to use the functional decomposition explained in section 2.3.1 where the
process of the particle will be well distributed among the processors used for parti-
cles.

It is also possible to make that regions of the lattice for subdomains will be assigned
dynamically in order that each subdomain will have similar amount of computing.
This possibility may be the hardest to implement.

Page 52

4. Discussion and Summary

4.1.2 Critical Gap Bigger than Subdomain Size
If it is needed that one particle can interact with other particles further that one sub-
domain away, the following changes can be made:

• Make the cell list size to be the whole subdomain.

• All the particles will participate in the communication for accumulating forces.

• The message to communicate forces will be send to one side but to the number of
consecutive subdomains required. It then will receive the same number of mes-
sages from the opposite subdomains.

4.2 Summary
In this project a problem involving data structures that move from one subdomain to
another one and interact with an underlying lattice is implemented.

On the way, some different solutions and algorithms has been developed —usually
more than one for the same problem. The most convenient one was then choosen.

At the end an efficient 'toy' model that fits the initial requirements for calculate parti-
cles moving in a liquid is implemented.

Test have also been realized in order to verify the correctness of the implementation.

Some ways to expand this model are described in order that this project can be also
for other purposes.

Page 53

Appendix A: Header Files

Appendix A: Header Files

constants.h
1 //
2 //
3 // Project: Domain Decomposition for Colloid Clusters
4 // File: constants.h
5 // Author: Pedro Fernando Gomez Fernandez
6 // Version: 1.5
7 // Date: 5-9-2004
8 //
9 //
10//
11// Description: Definition of the main constants of the program
12//
13//
14
15#ifndef _CONSTANTS_H
16#define _CONSTANTS_H
17
18#define XSIZE 100 // Size of the lattice in the x dimension
19#define YSIZE 100 // Size of the lattice in the y dimension
20#define DELTAX 1.0 // The separation between lattice points
21#define CRITICALGAP 10.0 // The maximum distance between two solid
22 // particles when they will present a
23 // interaction between them.
24#define INCT 0.01 // The increment of time between
25 // iterations of the program
26#define RADIUSMAX 4.0 // The maximum radius that a particle
27 // will have
28
29#endif

particle.h
1.///
2.//
3.// Project: Domain Decomposition for Colloid Clusters
4.// File: particle.h
5.// Author: Pedro Fernando Gomez Fernandez
6.// Version: 1.5
7.// Date: 5-9-2004
8.//
9.///
10.//
11.// Description: In this file, structures and prototypes related
12.// to particles and lists of particles are described.
13.//
14.///
15.
16.#ifndef _PARTICLE_H
17.#define _PARTICLE_H
18.
19.#include <stdio.h> // Needed for FILE definition
20.

Page 54

Appendix A: Header Files

21.//
22.// STRUCTURES
23.//
24.
25.// Struct of particles
26.struct _particle{
27. int id; // Identifier of the particle
28. float x, y; // X and Y coordinates
29. float a; // Radius of the particle
30. float u, v; // Velocities of the particle
31. // in the x and y axes
32. float partialfx, partialfy; // Partial forces
33. float totalfx, totalfy; // Total forces
34. int totalPoints; // Total number of points
35. int partialPoints; // Partial number of points
36. struct _particle* next; // Pointer to next particle
37.};
38.
39.// Struct of a particle used to be sent
40.struct _particleItem{
41. int id; // Identifier of the particle
42. float x, y; // X and Y coordinates
43. float a; // Radius of the particle
44. float u, v; // Velocities of the particle
45. // in the x and y axes
46. float partialfx, partialfy; // Partial forces
47. int partialPoints; // Partial number of points
48.};
49.
50.// Struct of a particle list used as cells in the cell lists
51.struct _particleList{
52. int size; // Number of particles
53. struct _particleList* N; // Cell at the Noth of this cell
54. struct _particleList* NE; // Cell at the NE of this cell
55. struct _particleList* E; // Cell at the East of this cell
56. struct _particleList* SE; // Cell at the SE of this cell
57. struct _particleList* S; // Cell at the South of this cell
58. struct _particleList* SW; // Cell at the SW of this cell
59. struct _particleList* W; // Cell at the Western of this cell
60. struct _particleList* NW; // Cell at the NW of this cell
61. struct _particle* list; // Pointer to the first particle
62.};
63.
64.typedef struct _particle particle;
65.typedef struct _particleItem particleItem;
66.typedef struct _particleList particleList;
67.
68.
69.//
70.// CONSTRUCTORS
71.//
72.
73.// Constructor for particles: this create particles with an identifier 'id',
74.// two coordinates 'x' and 'y', a radius 'a'
75.// and a initial velocity 'u' and 'v'
76.particle* particleCreate(int id, float x, float y, float a, float u, float v);
77.
78.// Constructor for particleList: creates an empty particleList

Page 55

Appendix A: Header Files

79.particleList* particleListCreate();
80.
81.
82.//
83.// ADD AND REMOVE PARTICLES
84.//
85.// Add a particle 'p' to the particle list 'l'. Return the pos
86.// where 'p' is added; 0 if not added.
87.int addParticle(particleList* l, particle* p);
88.
89.// Accumulate forces and points of particle 'p' to a particle
90.// in the particle list 'l' with the same identifier.
91.// Return 0 if not found and 1 if success
92.int acumulateParticle(particleList* l, particle* p);
93.
94.// Remove the particle with the identifier 'id' from the
95.// particle list 'l' and return that particle
96.particle* removeParticle(particleList* l, int id);
97.
98.// Remove the first particle of the particle list 'l'
99.// and return that particle
100.particle* removeFirstParticle(particleList* l);
101.
102.// Clear the particle list of particles and free all memory
103.// used by those particles
104.int particleListClear(particleList* l);
105.
106.
107.//
108.// LINKED LIST TO ARRAY AND ARRAY TO LINKED LIST
109.//
110.
111.// Transform the partcle list 'l' in an array or particles 'a'. The
112.// memory of the array should be allocated before calling this
113.// method. Position of particles are saved relative to the
114.// coordinates 'x0' and 'y0'. Return the number of particles.
115.int particleListToArray(particleList* l, particleItem* a,
116. float x0, float y0);
117.
118.// Transform the array or particles 'a' of size 'size' in a
119.// partcle list 'l'. Position of particles are saved added
120.// to the coordinates 'x0' and 'y0'. Return the list.
121.particleList* particleArrayToList(particleItem* a, int size,
122. float x0, float y0);
123.
124.
125.//
126.// FORCES AND POINTS RELATED
127.//
128.
129.// Clear a list of particles freeing the memory of each particle
130.int particleListClearForces(particleList* l);
131.
132.// Calculate interaction forces of each particle in the list
133.// with all the other particles in the same list
134.int particleListCalculateForces(particleList* l);
135.
136.// Calculate interaction forces of each particle in the list

Page 56

Appendix A: Header Files

137.// with particles in cells around this. x0, y0, x1, y1 are
138.// the coordinates of the lattice region of the subdomain
139.// it belongs to.
140.int particleListCalculateForcesAround(particleList* l, float x0, float y0,
141. float x1, float y1);
142.
143.// Calculate interaction forces of particle 'p'
144.// with all the particles from 'next' to the end of the list
145.// if they are in the same list
146.int particleCalculateForcesSame(particle* p, particle* next);
147.
148.//Calculate interaction forces of particle 'p'
149.// with all the particles from 'next' to the end of the list
150.// if they are in different cells
151.int particleCalculateForcesTo(particle* p, particleList* next);
152.
153.// Calculate number of lattice points inside a particle for
154.// each particle of the list. x0, y0, x1 and y1 are the coordinates
155.// of the lattice region of the subdomain it belongs to.
156.int particleListCalculatePoints(particleList* l, float x0, float y0,
157. float x1, float y1);
158.
159.// Calculate number of lattice points inside a particle for
160.// particle 'p'. x0, y0, x1 and y1 are the coordinates
161.// of the lattice region of the subdomain it belongs to.
162.// Returns the number of points inside.
163.int particleCalculatePoints(particle* p, float x0, float y0,
164. float x1, float y1);
165.
166.// Get the number of particle in the particle list 'l' that will
167.// perform a vertical communication for adding forces. 'y' is the
168.// y coordinate of the border of the lattice region where the
169.// communication will be performed. 'x0' and 'x1' are the
170.// x coordintes of the lattice region in that cell.
171.// Returns the number of particles that will perform communication
172.int particleListGetVerticalForcesNum(particleList* l, float y,
173. float x0, float x1);
174.
175.// Get the number of particle in the particle list 'l' that will
176.// perform an horizontal communication for adding forces. 'x' is the
177.// x coordinate of the border of the lattice region where the
178.// communication will be performed. 'y0' and 'y1' are the
179.// y coordintes of the lattice region in that cell
180.// Returns the number of particles that will perform communication
181.int particleListGetHorizontalForcesNum(particleList* l, float x,
182. float y0, float y1);
183.
184.// Get the particles in the particle list 'l' that will perform
185.// a vertical communication for adding forces and save them in
186.// the particle array 'a'. 'y' is the y coordinate of the
187.// border of the lattice region where the communication
188.// will be performed. 'x0' and 'x1' are the x coordintes
189.// of the lattice region in that cell
190.// Return the number of particles added to the array
191.int particleListGetVerticalForces(particleList* l, particleItem* a, float y,
192. float x0, float x1);
193.
194.// Get the particles in the particle list 'l' that will perform

Page 57

Appendix A: Header Files

195.// an horizontal communication for adding forces and save them in
196.// the particle array 'a'. 'x' is the x coordinate of the
197.// border of the lattice region where the communication
198.// will be performed. 'y0' and 'y1' are the y coordintes
199.// of the lattice region in that cell
200.// Return the number of particles added to the array
201.int particleListGetHorizontalForces(particleList* l, particleItem* a,
202. float x, float y0, float y1);
203.
204.// Save the total results of each particle in the list as the partial ones.
205.int particleListTotalToPartial(particleList* l);
206.
207.// Calculate the interaction force between two particles separated
208.// 'dist' in the direction of the vector defined by 'xnorm' and
209.// 'ynorm'. The result is stored in 'xf' and 'fy'
210.int force(float dist, float xnorm, float ynorm, float* xf, float* yf);
211.
212.
213.//
214.// MOVEMENT OF PARTICLES
215.//
216.
217.// Update the position of each particle of the particle list 'l'
218.// with a time increment 'inct'. x0, y0, x1 and y1 are the
219.// coordinates of the lattice region of the subdomain
220.// it belongs to.
221.int particleListIteration(particleList* l, float inct, float x0, float y0,
222. float x1, float y1);
223.
224.// Relocate each particle of the particle list 'l' if they
225.// have change of cell after updating their position.
226.// x0, y0, x1 and y1 are the coordinates of the lattice
227.// region of the subdomain it belongs to.
228.int particleListRelocation(particleList* l, float x0, float y0,
229. float x1, float y1);
230.
231.
232.//
233.// PRINTING FUNCTIONS
234.//
235.
236.// Print the contents of a list of particle in the screen
237.int printList(particleList* l);
238.
239.// Print the contents of a list of particle in a file
240.int printListToFile(FILE* fd, particleList* l);
241.
242.#endif

Page 58

Appendix A: Header Files

cellList.h
1.///
2.//
3.// Project: Domain Decomposition for Colloid Clusters
4.// File: cellList.h
5.// Author: Pedro Fernando Gomez Fernandez
6.// Version: 1.5
7.// Date: 5-9-2004
8.//
9.///
10.//
11.// Description: In this file, structures and prototypes related
12.// to cell lists are described.
13.//
14.///
15.
16.#ifndef _CELLLIST_H
17.#define _CELLLIST_H
18.#include "particle.h"
19.#include "MPIWrapper.h"
20.#include <stdio.h>
21.
22.//
23.// STRUCTURES
24.//
25.
26.// Struct of cell lists
27.struct _cellList{
28. float xsize; // Size in the x dimension
29. float ysize; // Size in the y dimension
30. float x0, y0; // Lower coordinates
31. float x1, y1; // Higher coordinates (lower coordinate + size)
32. int xDim, yDim; // Number of cell in each dimension
33. particleList** list; // Two dimensional array of cells
34.};
35.
36.typedef struct _cellList cellList;
37.
38.//
39.// CONSTRUCTOR
40.//
41.
42.// Constructor for cellList: this create cellLists with size
43.// 'xsize' and 'ysize' with origin coordinates 'x0' and 'y0' and
44.// including the particles in 'list' if some of these particles
45.// are not in the region of the cellList, they will not be included
46.// in the cellList
47.cellList* cellListCreate(float xsize, float ysize, float x0, float y0,
48. particleList* list);
49.
50.
51.//
52.// LINKS SETTERS
53.//
54.
55.// Set the initial values of the links of the cell list

Page 59

Appendix A: Header Files

56.int cellListSetLinks(cellList* c);
57.
58.// Set the links of the cell list for calculating forces
59.int cellListSetLinksForForce(cellList* c);
60.
61.// Set the links of the cell list for updating particles position
62.int cellListSetLinksForMove(cellList* c);
63.
64.//
65.// ADD AND REMOVE PARTICLES
66.//
67.
68.// Add particles in 'list' to the cell list
69.int cellListAdd(cellList* c, particleList* list);
70.
71.// Add particles in 'list' to the cell list including the halo
72.int cellListAddWithHalo(cellList* c, particleList* list);
73.
74.// Accumulate forces and points of particles in 'list'
75.// to the ones in the cell list including the halo
76.int cellListAcumulateWithHalo(cellList* c, particleList* list);
77.
78.// Add the particle 'p' to the cell list
79.int cellListAddParticle(cellList* c, particle* p);
80.
81.// Add the particle 'p' to the cell list including the halo
82.int cellListAddParticleWithHalo(cellList* c, particle* p);
83.
84.// Accumulate forces and points of particle 'p'
85.// to the one withs same identifier in the cell
86.// list including the halo
87.int cellListAcumulateParticleWithHalo(cellList* c, particle* p);
88.
89.// Clear the halos of the cell list
90.int cellListClearHalos(cellList* c);
91.
92.//
93.// GET AND SET HALOS
94.//
95.
96.// Get the up halo of the cell list. Returns an array with
97.// the particles in the halo and sets 'size' to the array size
98.particleItem* cellListGetUpHalo(cellList* c, int* size);
99.
100.// Get the down halo of the cell list. Returns an array with
101.// the particles in the halo and sets 'size' to the array size
102.particleItem* cellListGetDownHalo(cellList* c, int* size);
103.
104.// Get the right halo of the cell list. Returns an array with
105.// the particles in the halo and sets 'size' to the array size
106.particleItem* cellListGetRightHalo(cellList* c, int* size);
107.
108.// Get the left halo of the cell list. Returns an array with
109.// the particles in the halo and sets 'size' to the array size
110.particleItem* cellListGetLeftHalo(cellList* c, int* size);
111.
112.// Set the particles in the array 'halo' wich has a size 'size'
113.// in the down halo of the cell list

Page 60

Appendix A: Header Files

114.int cellListSetDownHalo(cellList* c, particleItem* halo, int size);
115.
116.// Set the particles in the array 'halo' wich has a size 'size'
117.// in the up halo of the cell list
118.int cellListSetUpHalo(cellList* c, particleItem* halo, int size);
119.
120.// Set the particles in the array 'halo' wich has a size 'size'
121.// in the left halo of the cell list
122.int cellListSetLeftHalo(cellList* c, particleItem* halo, int size);
123.
124.// Set the particles in the array 'halo' wich has a size 'size'
125.// in the right halo of the cell list
126.int cellListSetRightHalo(cellList* c, particleItem* halo, int size);
127.
128.//
129.// FORCES AND POINTS RELATED
130.//
131.
132.// Clear the forces of all the particles in the cell list
133.int cellListClearForces(cellList* c);
134.
135.// Set the partial forces of the particles in the cell list
136.// to the total value
137.int cellListTotalToPartial(cellList* c);
138.
139.// Calculate interaction forces in the same cell for
140.// all particles in the cell list
141.int cellListCalculateForcesSameCell(cellList* c);
142.
143.// Calculate interaction forces in sorround cells for
144.// all particles in the cell list
145.int cellListCalculateForcesAroundCells(cellList* c);
146.
147.// Calculate the lattice points inside particles for
148.// all the particles in the cell list
149.int cellListCalculatePoints(cellList* c);
150.
151.// Get the particles that will accumulate forces in the up
152.// direction of the cell list. Returns an array with
153.// those particles and sets 'size' to the array size
154.particleItem* cellListGetUpForces(cellList* c, int* size);
155.
156.// Get the particles that will accumulate forces in the down
157.// direction of the cell list. Returns an array with
158.// those particles and sets 'size' to the array size
159.particleItem* cellListGetDownForces(cellList* c, int* size);
160.
161.// Get the particles that will accumulate forces in the right
162.// direction of the cell list. Returns an array with
163.// those particles and sets 'size' to the array size
164.particleItem* cellListGetRightForces(cellList* c, int* size);
165.
166.// Get the particles that will accumulate forces in the left
167.// direction of the cell list. Returns an array with
168.// those particles and sets 'size' to the array size
169.particleItem* cellListGetLeftForces(cellList* c, int* size);
170.
171.// Accumulate forces from the particles in the array 'halo'

Page 61

Appendix A: Header Files

172.// wich has a size 'size' with the ones with same identifier
173.// in the down region of the cell list
174.int cellListSetDownForces(cellList* c, particleItem* halo, int size);
175.
176.// Accumulate forces from the particles in the array 'halo'
177.// wich has a size 'size' with the ones with same identifier
178.// in the up region of the cell list
179.int cellListSetUpForces(cellList* c, particleItem* halo, int size);
180.
181.// Accumulate forces from the particles in the array 'halo'
182.// wich has a size 'size' with the ones with same identifier
183.// in the left region of the cell list
184.int cellListSetLeftForces(cellList* c, particleItem* halo, int size);
185.
186.// Accumulate forces from the particles in the array 'halo'
187.// wich has a size 'size' with the ones with same identifier
188.// in the right region of the cell list
189.int cellListSetRightForces(cellList* c, particleItem* halo, int size);
190.
191.
192.//
193.// MAIN FUNCTIONS
194.//
195.
196.// Swapt the halos of the cell list clearing them before
197.int cellListSwapHalos(cellList* c, process* p);
198.
199.// Calculate interaction forces for each particle and lattice point
200.// inside them.
201.int cellListCalculateForces(cellList* c);
202.
203.// Performs communications to accumulate forces of particles
204.// in more than one subdomain
205.int cellListAcumulateForces(cellList* c, process* p);
206.
207.// Update the particles position
208.int cellListIteration(cellList* c, float inct);
209.
210.//
211.// PRINTING FUNCTIONS
212.//
213.
214.// Print the content of the cell list in the screen
215.void printCellList(cellList* c);
216.
217.// Print the content of the cell list with the halos in the screen
218.void printCellListWithHalo(cellList* c);
219.
220.// Print the content of the cell list in a file
221.void printCellListToFile(FILE* fd, cellList* c);
222.
223.// Print the content of the cell list with the halos in a file
224.void printCellListWithHaloToFile(FILE* fd, cellList* c);
225.
226.#endif

Page 62

Appendix A: Header Files

MPIWrapper.h
1.//
2.//
3.// Project: Domain Decomposition for Colloid Clusters
4.// File: MPIWrapper.h
5.// Author: Pedro Fernando Gomez Fernandez
6.// Version: 1.5
7.// Date: 5-9-2004
8.//
9.//
10.//
11.// Description: In this file, structures and prototypes related
12.// to process are described. These are the only methods that
13.// will use real MPI functions. That allow the rest of the
14.// program to do not have to deal with real MPI functions.
15.//
16.//
17.
18.#ifndef _MPIWRAPPER_H
19.#define _MPIWRAPPER_H
20.
21.#include "particle.h"
22.#include <mpi.h>
23.
24.//
25.// STRUCTURE
26.//
27.
28.// Struct of the process
29.struct _process{
30. int myid; // Identifier of the process
31. int numprocs; // Total number of processes
32. int x, y; // Coordinates of the process
33. // in a 2 dimensional decomposition
34. int xDim, yDim; // X and Y dimensions of the
35. // decomposition
36. MPI_Comm topology; // The 2 dimensional decomposition
37. // topology
38. MPI_Datatype MPIParticle; // The datatype definition of a
39. // particleItem needed to send MPI
40. // messages containing this type
41. // of data
42.};
43.
44.typedef struct _process process;
45.
46.
47.//
48.// INIT AND END MPI
49.//
50.
51.// Initialize an MPI program
52.void MPIWrapperInit(int argc, char *argv[]);
53.
54.// Initialize the process structure setting all its values
55.process* MPIWrapperInitProcess();

Page 63

Appendix A: Header Files

56.
57.// Finish the MPI program
58.void MPIWrapperEnd();
59.
60.
61.//
62.// SENDING AND RECIVING
63.//
64.
65.// Send up and array of particleItems of size 'size' and receive
66.// from down an array of particleItems that will be returned
67.// and the 'reciveSize' value sets to its size.
68.particleItem* SendUpReceiveDown(process* p, particleItem* send, int size,
69. int* receiveSize);
70.
71.// Send down and array of particleItems of size 'size' and receive
72.// from up an array of particleItems that will be returned
73.// and the 'reciveSize' value sets to its size.
74.particleItem* SendDownReceiveUp(process* p, particleItem* send, int size,
75. int* receiveSize);
76.
77.// Send right and array of particleItems of size 'size' and receive
78.// from left an array of particleItems that will be returned
79.// and the 'reciveSize' value sets to its size.
80.particleItem* SendRightReceiveLeft(process* p, particleItem* send, int size,
81. int* receiveSize);
82.
83.// Send left and array of particleItems of size 'size' and receive
84.// from right an array of particleItems that will be returned
85.// and the 'reciveSize' value sets to its size.
86.particleItem* SendLeftReceiveRight(process* p, particleItem* send, int size,
87. int* receiveSize);
88.
89.#endif

Page 64

Appendix B: Workplan

Appendix B: Workplan

Week Date Task
1 19-5/26-5 Get information about the project.
2 27-5/2-6 Get more information about the project.
3 3-6/9-6 Introduction presentation.
4 10-6/16-6 Analysis.
5 17-6/23-6 Analysis and Design.
6 24-6/30-6 Serial code implementation.
7 1-7/7-7 Serial code implementation.
8 8-7/14-7 MPI code for 1 particle.
9 15-7/21-7 MPI code for 1 particle.
10 22-7/28-7 Particle list implementation.
11 29-7/4-8 Particle list implementation.
12 5-8/11-8 MPI code for 2 particles.
13 12-8/18-8 Forces accumulation communication.
14 19-8/25-8 Testing correctness and memory leaks.
15 26-8/1-9 Reviewing final document.
16 2-9/8-9 Reviewing final document.

Page 65

References

References

[1] S. Succi. “The Lattice Boltzmann Equations for Fluid Dynamics and Beyond”
Clarendo, Oxford (2001)

[2] M.P. Allen and D.J. Tidesley. “Compute Simulation of Liquids”
[3] J. C. Desplat, I. Pagonabarraga and P. Bladon. “LUDWIG: A parallel lattice-

Boltzmann code for complex fluids” Compt. Phys. Comms. 134 (2001)
[4] N. Q. Nguyen and A. J. C. Ladd. “Lubrication corrections for lattice-Boltzmann

simulations of particle suspensions. Phys. Rev. E, 66, 046708 (2002)
[5] A. J. C. Ladd. “Numerical simulations of particulate suspensions via discretised

Boltzmann equation. Part 1. Theoretical foundation” J. Fluid. Mech. 271 (1994)
[6] A. J. C. Ladd. “Numerical simulations of particulate suspensions via discretised

Boltzmann equation. Part 2. Numerical results” J. Fluid. Mech. 271 (1994)
[7] “MPI: A Message-Passing Interface Standard” Message Passing Interface Forum

(1995)

Page 66

